2.5 TensorFlow
2.5 tensorflow
tensorflow是谷歌的第二代人工智能学习系统,其命名来源于本身的运行原理。tensor意味着n维数组,flow意味着基于数据流图的计算,tensorflow为tensor从流图的一端流动到另一端的计算过程。所以也可以把tensorflow当作将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。
tensorflow可被用于语音识别或图像识别等多项机器深度学习领域,基于2011年开发的深度学习基础架构distbelief进行了全面改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。
tensorflow支持多种安装方式。
1. ubuntu/linux
# 仅使用 cpu 的版本
$ pip install tensorflow
# 开启 gpu 支持的版本 (安装该版本的前提是已经安装了 cuda sdk)
$ pip install tensorflow-gpu
2. mac os x
在mac os x系统上,我们推荐先安装homebrew,然后执行brew install python,以便能够使用homebrew中的python安装tensorflow。
pip install tensorflow
3. 基于docker的安装
如下命令将启动一个已经安装好tensorflow及相关依赖的容器。
$ docker run -it b.gcr.io/tensorflow/tensorflow
4. 基于virtualenv的安装
官方文档推荐使用virtualenv创建一个隔离的容器来安装tensorflow,这是可选的,但是这样做能使排查安装问题变得更容易。virtualenv通过创建独立python开发环境的工具,来解决依赖、版本以及间接权限问题,比如一个项目依赖django1.3而当前全局开发环境为django1.7,版本跨度过大,导致不兼容使项目无法正在运行,使用virtualenv就可以解决这些问题。
首先,安装所有必备工具:
#在linux上:
$ sudo apt-get install python-pip python-dev python-virtualenv
# 在 mac 上:
# 如果还没有安装 pip
$ sudo easy_install pip
$ sudo pip install --upgrade virtualenv
接下来,建立一个全新的virtualenv环境,为了将环境建在~/tensorflow目录下,执行如下代码:
$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow
然后,激活virtualenv:
$ source bin/activate
# 如果使用 bash $ source bin/activate.csh
# 如果使用 csh (tensorflow)$
# 终端提示符应该发生变化
在virtualenv内,安装tensorflow:
(tensorflow)$ pip install --upgrade <$url_to_binary.whl>
接下来,使用类似命令运行tensorflow程序:
(tensorflow)$ cd tensorflow/models/image/mnist
(tensorflow)$ python convolutional.py
# 当使用完 tensorflow
(tensorflow)$ deactivate
tensorflow是谷歌的第二代人工智能学习系统,其命名来源于本身的运行原理。tensor意味着n维数组,flow意味着基于数据流图的计算,tensorflow为tensor从流图的一端流动到另一端的计算过程。所以也可以把tensorflow当作将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。
tensorflow可被用于语音识别或图像识别等多项机器深度学习领域,基于2011年开发的深度学习基础架构distbelief进行了全面改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。
tensorflow支持多种安装方式。
1. ubuntu/linux
# 仅使用 cpu 的版本
$ pip install tensorflow
# 开启 gpu 支持的版本 (安装该版本的前提是已经安装了 cuda sdk)
$ pip install tensorflow-gpu
2. mac os x
在mac os x系统上,我们推荐先安装homebrew,然后执行brew install python,以便能够使用homebrew中的python安装tensorflow。
pip install tensorflow
3. 基于docker的安装
如下命令将启动一个已经安装好tensorflow及相关依赖的容器。
$ docker run -it b.gcr.io/tensorflow/tensorflow
4. 基于virtualenv的安装
官方文档推荐使用virtualenv创建一个隔离的容器来安装tensorflow,这是可选的,但是这样做能使排查安装问题变得更容易。virtualenv通过创建独立python开发环境的工具,来解决依赖、版本以及间接权限问题,比如一个项目依赖django1.3而当前全局开发环境为django1.7,版本跨度过大,导致不兼容使项目无法正在运行,使用virtualenv就可以解决这些问题。
首先,安装所有必备工具:
#在linux上:
$ sudo apt-get install python-pip python-dev python-virtualenv
# 在 mac 上:
# 如果还没有安装 pip
$ sudo easy_install pip
$ sudo pip install --upgrade virtualenv
接下来,建立一个全新的virtualenv环境,为了将环境建在~/tensorflow目录下,执行如下代码:
$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow
然后,激活virtualenv:
$ source bin/activate
# 如果使用 bash $ source bin/activate.csh
# 如果使用 csh (tensorflow)$
# 终端提示符应该发生变化
在virtualenv内,安装tensorflow:
(tensorflow)$ pip install --upgrade <$url_to_binary.whl>
接下来,使用类似命令运行tensorflow程序:
(tensorflow)$ cd tensorflow/models/image/mnist
(tensorflow)$ python convolutional.py
# 当使用完 tensorflow
(tensorflow)$ deactivate