成永兴从奉天回到春城不久,暑假就结束了。整个假期,他根本就没有在家呆几天,差不多都是在奉天度过的。
    而他的老乡同学们,都耀武扬威的过足了瘾。
    衣锦还乡,这个词的含义,被大家深刻的体会到了。
    当然,这里面收获最大的,应该还是年纪最小的成永兴吧。随着口口相传,慢慢的,他的作用也被同学们和家长们所认知。
    成永兴甚至在几位女同学的家长眼里,看到了不对劲的眼神。反而是她们的女儿,还是懵懂。
    返校的时候,大家还是成群结队,共同出发。
    这帮青年人,这次离乡和以往不同,他们普遍对未来充满了憧憬。年轻人正是自信心爆棚的年龄,再被家乡父老一顿吹捧,赶英超美,只在等闲!
    大家的包裹里,这次普遍装的都是食物。他们即使有什么要洗的衣服,也是到成永兴那里去解决掉,没有人背脏衣服回来了。
    所以,在回校的列车上,小桌子上摆满了吃的。大家一边坐车,一边吃零食。等到了学校,一点都不饿。
    ————————
    回到了学校,成永兴要做的第一件事情,就是整理资料,然后准备申请专利。
    在奉天,在科仪厂科研人员的全力配合下,他又迅速攻破了两个重要节点。
    科仪厂作为半导体设备的定点厂,产品虽然并不是全系列,但总的来说,条件要比工大的实验室好很多。
    另外,厂里的加工手段完备,一些小修小补小改,方便得很。
    要不是因为开学,成永兴甚至觉得,在科仪厂做研究,项目的进展完全可以会更快一些。
    —————————
    第三关,两步法工艺的改良。
    这里,先谈一下蓝光led的材料选择。
    合适的蓝光led材料有三类,一类是sic(碳化硅)材料,一类是znse(硒化锌)材料,另外一类是gan(氮化嫁)材料。
    由于sic从物理原理上,就限制了其发光效率不可能高,所以人们很自然地把注意力转向了znse基和gan基材料。
    gan的合成十分困难,生长得到的材料具有很高的线缺陷(位错)密度,按照传统半导体物理的认识,gan这么高的位错密度不可能发强光。
    因此,世界上研究蓝光led的科学家中,选择znse的超过了一万人,而选择gan的不到10人。
    为了解决gan的合成问题,剩余的这十名科学家,分别开始了独自的尝试。
    —————————
    赤崎教授,选择了晶体结构和gan接近,但是晶格常数失配的蓝宝石作为衬底材料,进行gan的异质外延(生长)。
    由于晶格失配,gan外延层和蓝宝石衬底之间存在失配应力,应力的释放会导致gan内部产生大量缺陷。这样的材料无法应用于器件。
    但这个问题,在1985年,被赤崎教授的弟子,天野浩解决,这就是著名的两步法。
    步骤是,在蓝宝石衬底上先生长一层aln缓冲层,再将温度升高生长gan。
    由于缓冲层释放了gan和蓝宝石之间的失配应力,这种“两步法”生长技术使得gan的晶体质量显著改善,满足了器件制作的基本要求。
    这个方法的发现,差不多历时前后5年,师生两个人接力,才算搞定。
    —————————
    按理说,一般的科学研究工作者,进行某项研究的思路,都是踏着前人留下的足迹前进。尤其是没有达到终点之前。
    因为改变前人,甚至推翻前人的工作,完全是得不偿失。
    例如两步法的发现,就用时差不多四五年时间。换个人来研究,是不是也要准备个几年时间?
    这怎么选择,不是一目了然嘛!
    但大侠就是大侠,中村拿到这个论文后,不是继续往下研究,而是放飞自我。
    他决定试试在缓冲层中采用gan而非aln的方法。
    具体思路是在低温生长的非结晶状态的gan膜之上,在高温条件下生长出gan单晶膜。只要这个取得成功,就可以制出与在底板上直接生长单晶gan膜相同的构造。
    按照这个思路,中村进行了尝试。
    结果嘛,一次成功!
    这种方法的核心,是采用了低温gan缓冲层(500c左右)替代了aln缓冲层。这一基于低温gan缓冲层的“两步法”工艺,成为日后工业界生长gan基led的标准工艺。
    当然了,做出这步改良的理由,也是异常奇怪。中村给出的解释居然是,别人用过的方法,我不用!
    这种“二”的说话方式,成永兴也用过!
    不就是强词夺理嘛!
    谁不会啊!
    你有种!
    别人对的方法,你也别用!
    —————————
    第四关,退火工艺。
    led从本质上说是一个二极管,二极管的核心结构是半导体p-n结。p-n结是由n型半导体(内部含有大量自由电子)和p型半导体(内部含有大量带正电的自由载流子——空穴)组成的界面。
    对gan而言,n型掺杂比较容易实现,但p型掺杂却十分困难。在gan中经常使用的p型掺杂剂是zn或者mg,但是掺入这些杂质后,gan往往仍体现高阻特性,这意味着p型掺杂剂并没有被激活,没有起作用。
    这个问题曾困惑了科学界很久,最后也是被天野浩解决的。解决方法是用低能电子束辐照方法来获得p-gan。
    这个方法的发现,天野浩也是耗时很久。他从86年起就一直在尝试,直到89年,才突然碰运气得到。
    —————————
    在这个步骤上,中村大侠的“二”病再此发作!
    他再次推翻了前面科学家的研究成果,改为加热!
    这也就是所谓退火工艺的由来。
    根据中村自己的解释,他是在非常偶然情况下,得到了这个意外结果。
    在重复电子束照射实验前,他不小心把工作台给加热了!于是,他就发现,在电子束辐照过程中,在样品下面加热可以获得更好的结果。
    对此现象,他又继续研究,进而确认,仅仅依靠加热就可以获得p-gan。而退火工艺的原理,中村大侠并没有给出合理的解释。
    从此,热退火就成为了制作蓝光led的标准工艺,沿用至今。
    当然了,事情是否真偶然,谁也不知道。
    讲故事谁不会?
    ...
    退火工艺的背后原理,在很久以后才被人揭示。
    p-gan中的mg会被mocvd外延过程中引入的h钝化,形成mg-h络合物。无论是低能电子辐照还是热退火,都是通过借助外部能量破坏mg-h键而激活mg杂质。
    —————————
    这两个工艺步骤的实现,足以说明中村的逆天运气!
    前人耗时五六年的成果,他在很短的时间内,全部推翻,而且找到了更好的方式!
    而他发现的这些工艺步骤,即使在三十年后,也无人能改!
    有没有这么一种可能:
    这些工艺,之所以无人能改,因为它们实际就是三十年后的成熟工艺!但被提前拿到了1990年!

章节目录

重生之北国科技所有内容均来自互联网,一曲书屋只为原作者冰城之光的小说进行宣传。欢迎各位书友支持冰城之光并收藏重生之北国科技最新章节