群论?
    研究素数问题……
    王浩思考着觉得,这是一个很好的想法。
    群论是对群体研究的数学方法,它的重要性主要体现在抽象代数中。
    在抽象代数领域中,像是环、域、模等代数结构,都可以看到是,在群的基础上添加运算和公理形成的。
    用群论去研究数论,去研究素数,想一下就觉得非常新颖。
    最重要的是,刚才的灵感激活,证明这是一个可行的方法,既然研究勒让德猜想是可行的,自然也能用来研究其他和素数相关的数学问题。
    王浩马上就想到了一个著名的数论猜想——哥德巴赫猜想。
    绝大部分数学家都考虑过哥德巴赫猜想问题,因为这个猜想理解起来非常的简单,听起来就好像是解决一个简单问题。
    但是深入去思考的时候,就发现大部分思考做的都是无用功。
    “如果用群论的方法去研究素数,研究出素数的概念性质,是不是可以理解为就破解了质数的奥秘?”
    “那么如何把群论和素数结合在一起?”
    “黎曼猜想或周氏猜想,也许能够用群论的方法去研究,但这种研究是有终点的,不太可能实现证明。”
    “像是哥德巴赫猜想,要联系在一起又很难……”
    “这个……”
    王浩思考着犹豫了,他感觉自己是找到了一个研究数论的方向。
    但问题是……
    任务数量不够了。
    ‘任务一’是ns方程的研究,‘任务三’则是湮灭力的研究,只剩下一个‘任务二’,是留给日常刷小研究用的。
    质数的研究都不是小研究,而且他有心去研究著名的数论猜想。
    王浩犹豫了好半天,最后下定了决心,“大不了放弃任务,也就损失一些教学币!”
    建立任务——
    【任务二】
    【研发项目名称:哥德巴赫猜想的证明(难度:s。)】
    【消耗教学币,可以在一定时间内,增大获取与之相关灵感值的几率。】
    【灵感值:0。】
    【灵感值积累达到100点,可以一次性消耗,辅助获取原发相关灵感、知识的相互关联。】
    【完成s级难度研究,每一项额外获取教学币数量:3000。】
    【任务结算,获得教学币奖励。】
    “……”
    “哥德巴赫猜想,才只有s级?”
    第一百五十八章 你们的研究是错误,但你们的研究太重要了!?
    “哥德巴赫猜想的研究,难度才只有s级?”
    王浩确实感到非常的惊讶,他之前一直都认为世界顶级的数学难题,难度都会是s+级,就比如ns方程。
    但仔细想想,也可以理解了。
    ns方程可不单单是一道数学难题,而且是一个系统性的研究,是个非常复杂的问题,正因为如此,才能入选千禧年七大数学猜想之一。
    哥德巴赫猜想非常有名,却没有入选千禧年数学猜想,原因之一就是,它就只是一个和素数有关的数学题目。
    当然也不能以千禧年数学猜想,来评判一个研究的难易程度,毕竟里面存在一些人为判断的因素。
    换个角度来说,对比角谷猜想就可以理解了。
    角谷猜想只是s级研究成果的‘附带研究’,研究主要是解决一类问题的数学方法,其中就包括了角谷猜想,也包含其他的猜想和问题。
    这个研究主要成果是数学方法,而不是方法能解决的问题。
    哥德巴赫猜想是素数有关的题目,比角谷猜想的难度稍微高一些,但终究来说,只是一个数学题目而已。
    从这个角度来说,s级的难度已经很高了。
    哥德巴赫猜想之所以知名度高,主要原因就是它很容易理解,即便是小学生都能够弄懂,甚至还可以深入思考一番。
    另外,就是猜想已经流传了两百多年,并不断被数学界提出,自然会变得非常有名气。
    以此,王浩也对于系统对于研发项目的难度判断,有了更细致化的了解。
    简单来说,d级以下难度就是普通的题目。
    d级难度,已经达到了科研级别,都可以说是创新式的研究。
    c级难度,已经有一定的应用价值或者难度高很多,达到了普通sci级别,有些优秀的应用研究,会拥有很大的影响力。
    b级难度,都可以说是顶级期刊水平,研究不一定有多大的应用性,但难度肯定是非常高的。
    a级难度,不是一般能解决的问题了,就像是大数相乘算法的创新,类似难度的问题也许十几年,二十几年没有进展。
    s级难度,已经是最顶级的研究,难度最高的题目,每一个s级难度的研究都可以说是震惊世界的。
    s+级别难度,就很难做出判定了。
    王浩对s+级难度的理解,就是系统性的工程,或者可以带动理论或科技取得巨大进步的研究。
    在确定了要做哥德巴赫猜想的研究之后,王浩也开始了先期工作。
    他首先找到了一大堆的相关资料和论文。
    然后,开始研究。
    这些论文都是和哥德巴赫猜想有关的论文,其中也包括陈景润先生对于‘1+2’的证明论文,论文的名称是《表大偶数为一个素数及一个不超过二个素数的乘积之和》。
    1+2,指的当然不是1+2=3。
    哥德巴赫猜想出现在1742年。
    当时哥德巴赫给欧拉的信中提出了以下猜想,任一大于2的整数都可写成三个质数之和。
    哥德巴赫自己无法证明它,就写信请教赫赫有名的大数学家欧拉帮忙证明。
    然而一直到死,欧拉也无法证明。
    不过欧拉还是进行了很多研究的,他在给哥德巴赫猜想中的回信中提出了另一个等价的版本,也就是现在流传最广的版本,即‘任一大于2的偶数都可写成两个质数之和’。
    正因为如此,才会有‘1+1’的说法。
    1+1,说的是两个质数之和。
    陈景润证明的‘1+2’,则是‘任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和’。
    他所利用的方法就是最经典的‘筛法’。
    历史上,所有哥德巴赫猜想相关证明进展,利用的都是筛法,筛法,也就是筛选法,理解起来很容易。
    首先把自然数按次序排列起来,从数字1开始,1不是质数,也不是合数,要划去。
    第二个数2是质数留下来,而把2后面所有能被2整除的数都划去。
    2后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。
    3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去……
    这样一直做下去,就会把不超过n的全部合数都筛掉,留下的就是不超过n的全部质数。
    这个方法听起来很简单,实际上,因为筛选过程是无穷尽的,就必须要用到数学分析方法,涉及到的是组合数学问题。
    组合数学,一定程度上就可以为离散数学。
    广义上来说,组合数字的分析就是离散数学,但实际应用来说,狭义的组合数学是离散数学除去图论、代数结构数理逻辑后剩下的部分。
    离散数学,就是王浩的‘拿手好戏’。
    所以对于陈景润的研究论文,王浩很容易就读懂了,了解了其中的方法逻辑。
    同时也做了一个判断——就像是数学界普遍的看法,陈景润先生已经把筛法运用到了极致,也只完成了‘1+2’的证明。
    换句话说,这条路是走不通的。
    就好像是对于π的确切数值的研究,哪怕是用计算机计算几百亿位,也不可能得到精准的π数值,π,依旧只能用符号表示,而不是一个确切的数字。
    换句话来说,单纯用计算的方法,不可能解出一个无理数,而用‘筛法’也不可能证明‘1+1’问题。
    王浩放下了手里的论文,不由得感慨一句,“哥德巴赫猜想,要证明好难啊!”
    他发出感慨,另一个原因则是,看了好几篇相关论文,结果任务灵感值,就只增长了可怜的1点。
    这说明‘筛法’根本就走不通。
    哪怕是看再多类似的研究论文,也对于解决哥德巴赫猜想没有任何帮助,甚至会影响自己的思维判断,对研究起了负面作用。
    “看来还是要找新方法,群论就是个不错的起点方向。”王浩思考着。
    旁边张志强听着王浩的小声念叨,忍不住用力撇了撇嘴,“哥德巴赫猜想很难?我还说黎曼猜想很难呢!”
    他有些好奇的凑过来问道,“王浩,你怎么开始研究哥德巴赫猜想了?”
    王浩郁闷道,“因为找不到方向啊,我一直在研究ns方程,结果研究卡住了,没什么进展,就想换一个方向。”
    “这跨度也太大了吧?”张志强扯了扯嘴角,“ns方程、哥德巴赫猜想,从偏微分方程到数论,我总觉得你应该专一些,奔着一个方向去研究。”
    他说着似乎代入了情感色彩,感慨的说道,“这就和人生一样,感情专一,才能够收获属于自己的那份爱情。”
    “你也一样啊,王浩,怎么样,不考虑找个女朋友?你张哥我是过来人,要是你有什么情感问题,问我准没错。”
    王浩怪异的看着张志强,仔细打量着他,问道,“你有女朋友了?”
    “这个……”
    “有喜欢的了?正‘专一’的展开追求?”

章节目录

从大学讲师到首席院士所有内容均来自互联网,一曲书屋只为原作者不吃小南瓜的小说进行宣传。欢迎各位书友支持不吃小南瓜并收藏从大学讲师到首席院士最新章节